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A new preparation of N-substituted 1,3-diamino-4,6-diamidobenzenes has been achieved. This synthesis
affords the first N-alkylamino derivatives for which a fine-tuning of the NR1R2 substituents should modify
the reactivity of the amine functions.
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Introduction of substituent(s) on the benzene ring1,2 has been
the object of extensive studies leading to hundreds of compounds
with tunable changes of the properties depending on the nature of
the substituent(s).3 Among them, N-functionalized benzenes
substituted in positions 1, 2, 4, and 5 have attracted a major inter-
est in organic, supramolecular, and coordination chemistry owing
to the ability of the substituents to act as nucleophiles,4–12 donor
or acceptor sites12, and coordinating moieties,13,14 respectively.
N-substituted 1,2,4,5-tetraaminobenzenes 1 (R = aryl or alkyl)
could be recently isolated15,16 but their use appeared limited ow-
ing to the high ability of these electron-rich arenes to oxidize under
air. In contrast, the 1,2,4,5-tetraamidobenzene analogues of type 2
are much more air-stable due to the presence of the four amido
functions. Such systems could then be used as bis-chelating13 or
non-innocent14 ligands in coordination chemistry but also in
supramolecular chemistry.12 Therefore, it is surprising that the
aromatic system 3a, which combines the structural elements of 1
and 2, has been poorly explored whereas the substitution pattern
of its amino and amido groups should allow their use as ligand
for complexation of metal centers or as building block for non-
covalent interactions by analogy with the 1,3-arylamides.17–20 To
the best of our knowledge, only very few molecules of type 3a have
been reported in the literature and all of them are NR1-substituted
by an aryl group.21,22
ll rights reserved.
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Their syntheses involved condensation reactions of aromatic com-
pounds which strongly limit the nature of the N-substituents
(R1 = aryl group, R2 = H).21,22 Therefore, an alternative route that
would give access to new 1,3-diamino-4,6-diamidobenzenes of type
3a could be useful to enlarge the scope of this class of molecules. For
instance, the preparation of N–R1 alkyl analogues, hitherto un-
known, should strongly modify the reactivity of the amino groups
in 3a (i.e., their basicity and/or nucleophilic character) owing to
the presence of more electron-donating substituents. As an exten-
sion of this study, further substituted analogues of type 3b, previ-
ously unknown, appear very attractive in the development of new
and tunable 1,2,4,5-tetranitrogenated benzenes.

Herein, we wish to report a new and versatile synthesis of 1,3-
diamino-4,6-diamidobenzenes which allowed the preparation of
the first N-alkyl-substituted compounds of type 3a (R1 = n-Bu),
and N,N0-disubstituted analogues of type 3b.

The commercially available precursor 4 was first reacted with n-
butylamine in refluxing EtOH to afford 5 in almost quantitative yield
(99%) (Scheme 1).23 To the best of our knowledge, although reported
in the literature,24,25 compound 5 has not been fully characterized
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Scheme 1. Synthesis of N-alkyl diamino-diamidobenzenes.
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(i.e., including by NMR). The direct reduction of 5 led to the forma-
tion of a large number of unidentified compounds due to the air oxi-
dation of the corresponding diamino derivative and further possible
side reactions such as hydrolysis and co-condensation.26 Introduc-
tion of protective groups was then envisaged in order to prevent
the oxidation of the reduced species. Compound 5 was thus treated
with BOC2O (4 equiv) in refluxing THF in the presence of a catalytic
amount of 4-DMAP to yield quantitatively 6.23 The reduction of the
nitro groups could not be performed with SnCl2 owing to the BOC
deprotection in acidic medium. Compound 6 was then reduced by
catalytic hydrogenation to afford 7 (97% yield),23 which was further
acylated with PhC(O)Cl in refluxing MeCN to allow the isolation of 8
(69% yield).23 Finally, deprotection of 8 in TFA gave access to 9 as a
yellow solid (43% yield).23 Its 1H NMR shows two broad singlets at
4.75 and 9.49 ppm corresponding to the amino and amido NH pro-
tons, respectively. As expected, molecule 9 is air stable due to the
presence of the two amido groups.

Interestingly, the 1H NMR spectrum of 7 shows the presence of
a larger number of signals than expected for a symmetry analogue
to that of 6. Two signals (I = 1) instead of one appear at d = 6.45 and
6.50 ppm for the aromatic proton located between the ‘NBOC’ sub-
stituents. In addition, the NH2 groups appear as two broad singlets
at 4.21 and 4.24 ppm, and the NCH2 methylenic protons as two
broad multiplets at 3.16 and 3.69 ppm. These observations would
suggest the presence of two conformations in equilibrium in solu-
tion resulted from H-bonded interactions involving the BOC groups
and the newly formed NH2 sites. Intermolecular aggregation could
be excluded upon the dilution conditions of the NMR experiments.

The use of secondary amines was also investigated in order to
extend this procedure to a broader applicability. Similarly to the
preparation of 5, molecule 4 was reacted with N-methyl-n-butyl-
amine to yield quantitatively 10 as an orange solid (Scheme 1).23

Its reduction could be achieved by catalytic hydrogenation to af-
ford 11 as a brown oil (81% yield). Acylation reaction of 11 with dif-
ferent acyl groups (R = aryl or alkyl) gave access to 12a or 12b as
yellow oils in 79 and 89% yield, respectively. In contrast to 7, the
1H NMR spectrum of 11 shows a symmetrical geometry in agree-
ment with the presence of one compound in solution and the
key role of the BOC substituents in the formation of two different
conformers for 7. It is noteworthy that the aromatic protons adja-
cent to the amide functions in 12a and 12b are strongly downfield
(d = 9.73 and 9.35 ppm, respectively) by comparison with 9
(d = 6.93 ppm).23 These observations suggest for molecules of type
12 H-bonding interactions between the carbonyl groups of the
amide functions in 4,6-positions and the C–H aromatic hydrogen
[C–H� � �O@C].27
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This phenomenon can be explained in 12a and 12b by steric hin-
drance of the methyl groups which prevent the rotation of the

(O)C–N bonds. In the case of 9, the amino groups in 1,3-positions
do not affect the amido functions in 4,6-positions allowing the free
rotation of the (O)C–N bonds (no hydrogen bonding interactions in
solution).

In the course of the preparation of unsymmetrical 12p electron
quinones such as 13, molecule 9 appeared to be a precursor of
choice by analogy with the recent synthesis of the closely related
analogue 14.26 However, similarly to 5, the reduction of 9 led to
a large mixture of compounds and despite successive purification
steps, compound 13 could be only identified by 1H NMR among
several by-products.
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In summary, we have disclosed a new synthesis of N-substituted
1,3-diamino-4,6-amidobenzenes. The first member of N-alkylamino
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derivatives (9) has been prepared in five steps with an overall yield
of 28%. N,N0-substituted analogues have been also synthetized with
aryl (12a) or alkyl (12b) acyl group (overall yield up to 72%). The
fine-tuning of the different substituents should enlarge the scope
of this family of molecules by analogy with other N4 donors.28
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